Abstract

In this paper, for the first time, the impact of drain doping profile on device electrostatics and circuit performance of novel InAs/Si Hetero-junction Double Gate Tunnel Field Effect Transistor (H-DGTFET) has been investigated. A highly doped layer placed near the source and channel junction decreases the width of the depletion region, thus, improving the ON-current and circuit performance. For this purpose, the effects of drain doping profile on the analog/RF performance of H-DGTFET is studied in terms of transconductance (gm), parasitic capacitances, cut-off frequency (fT) and gain bandwidth (GBW) product. The value of fT is increased by 13.84% and the GBW is improved by 144.7% for GD profile in Drain with CL = 0.05 when compared to UD profile. Further, the impact of drain doping profile on the circuit performance has been investigated by implementing digital and analog/RF circuits most widely used for nanoelectronic applications. For this, Verilog-A model has been developed for InAs/Si H-DGTFET. The circuit level performance assessment is carried out by implementing inverter, common source amplifier, inverter amplifier and pseudo differential amplifier by using Complementary TFET (CTFET) technology in a Verilog-A environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call