Abstract

Wave energy distribution within enclosures with irregular boundaries is a common phenomenon in many branches of electromagnetics. If the wavelength of the injected wave is small compared with the structure size, the scattering properties of the enclosure will be extremely sensitive to small changes in geometry or wave frequency. In this case, statistical models are sought. The random coupling model (RCM) is one such model that has been explored through experiments and theory. Previous studies were conducted by injecting waves into high Q cavities in a nearly omnidirectional manner. In this article, a directed beam approach is taken, and relatively low Q cavities are considered. The goal is to determine when the so-called “random plane wave hypothesis,” a fundamental basis of the RCM formulation, breaks down. Results show that injecting such directed beams leads to large deviations in the wave statistics for single realizations of the enclosure geometry. The expected statistics are restored to some degree when multiple realizations are considered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call