Abstract

In order to establish whether or not chloride ions behave as freely moving particles in “passive”, i.e. ouabain-and acetazolamide-treated, frog skin, tracer fluxes of 36Cl − have been measured while a voltage (generally +40 mV, serosal side positive) across the skin was applied. Ussing's flux ratio equation has been used as a criterion for this type of transport. One group of skin samples exhibited significant exchange diffusion phenomena. Most samples in a second group either behaved according to the flux ratio equation or showed significant and extreme exchange diffusion. From flux ratios obtained at two different voltages across various skin samples, showing extreme exchange diffusion, it appeared that the simple form of Kedem and Essig's law derived from irreversible thermodynamics, which is valid for homogeneous systems, does not apply to the type of exchange diffusion found. The system can, however, be described by a 1 : 1 exchange mechanism working in parallel with a diffusional pathway. The ratio exchange flux/observed efflux must then have a constant value (0.83) at the voltages applied, which implies that the exchange flux is voltage dependent. By comparison with iodide flux experiments as carried out by Ussing, it is shown that iodide exhibits the same type of exchange diffusion. A carrier, possibly responsibe for the observed behaviour, is described.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.