Abstract

Context-aware recommender systems (CARS) help improve the effectiveness of recommendations by adapting to users' preferences in different contextual situations. One approach to CARS that has been shown to be particularly effective is Context-Aware Matrix Factorization (CAMF). CAMF incorporates contextual dependencies into the standard matrix factorization (MF) process, where users and items are represented as collections of weights over various latent factors. In this paper, we introduce another CARS approach based on an extension of matrix factorization, namely, the Sparse Linear Method (SLIM). We develop a family of deviation-based contextual SLIM (CSLIM) recommendation algorithms by learning rating deviations in different contextual conditions. Our CSLIM approach is better at explaining the underlying reasons behind contextual recommendations, and our experimental evaluations over five context-aware data sets demonstrate that these CSLIM algorithms outperform the state-of-the-art CARS algorithms in the top-N recommendation task. We also discuss the criteria for selecting the appropriate CSLIM algorithm in advance based on the underlying characteristics of the data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call