Abstract
First, under a geometric ergodicity assumption, we provide some limit theorems and some probability inequalities for the bifurcating Markov chains (BMC). The BMC model was introduced by Guyon to detect cellular aging from cell lineage, and our aim is thus to complete his asymptotic results. The deviation inequalities are then applied to derive first result on the moderate deviation principle (MDP) for a functional of the BMC with a restricted range of speed, but with a function which can be unbounded. Next, under a uniform geometric ergodicity assumption, we provide deviation inequalities for the BMC and apply them to derive a second result on the MDP for a bounded functional of the BMC with a larger range of speed. As statistical applications, we provide superexponential convergence in probability and deviation inequalities (for either the Gaussian setting or the bounded setting), and the MDP for least square estimators of the parameters of a first-order bifurcating autoregressive process.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.