Abstract

ObjectiveMurray's law describes the optimal branching anatomy of vascular bifurcations. If Murray's law is obeyed, shear stress is constant over the bifurcation. Associations between Murray's law and intravascular ultrasound (IVUS) assessed plaque composition near coronary bifurcations have not been investigated previously. MethodsIn 253 patients plaque components (fibrous, fibro-fatty, necrotic core, and dense calcium) were identified by IVUS in segments proximal and distal to the bifurcation of a coronary side branch. The ratio of mother to daughter vessels was calculated according to Murray's law (Murray ratio) with a high Murray ratio indicating low shear stress. Analysis of variance was used to detect independent associations of Murray ratio and plaque composition. ResultsPatients with a high Murray ratio exhibited a higher relative amount of dense calcium and a lower amount of fibrous and fibro-fatty tissue than those with a low Murray ratio. After adjustment for age, sex, cardiovascular risk factors or concomitant medications, the Murray ratio remained significantly associated with fibrous volume distal (F-ratio 4.90, P=0.028) to the bifurcation, fibro-fatty volume distal (F-ratio 4.76, P=0.030) to the bifurcation, and dense calcium volume proximal (F-ratio 5.93, P=0.016) and distal (F-ratio 5.16, P=0.024) to the bifurcation. ConclusionThis study shows that deviation from Murray's law is associated with a high degree of calcification near coronary bifurcations. Individual deviations from Murray's law may explain why some patients are prone to plaque formation near vessel bifurcations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.