Abstract

Mapping multiple quantitative trait loci (QTL) is commonly viewed as a problem of model selection. Various model selection criteria have been proposed, primarily in the non-Bayesian framework. The deviance information criterion (DIC) is the most popular criterion for Bayesian model selection and model comparison but has not been applied to Bayesian multiple QTL mapping. A derivation of the DIC is presented for multiple interacting QTL models and calculation of the DIC is demonstrated using posterior samples generated by Markov chain Monte Carlo (MCMC) algorithms. The DIC measures posterior predictive error by penalizing the fit of a model (deviance) by its complexity, determined by the effective number of parameters. The effective number of parameters simultaneously accounts for the sample size, the cross design, the number and lengths of chromosomes, covariates, the number of QTL, the type of QTL effects, and QTL effect sizes. The DIC provides a computationally efficient way to perform sensitivity analysis and can be used to quantitatively evaluate if including environmental effects, gene–gene interactions, and/or gene–environment interactions in the prior specification is worth the extra parameterization. The DIC has been implemented in the freely available package R/qtlbim, which greatly facilitates the general usage of Bayesian methodology for genome-wide interacting QTL analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.