Abstract
As one of the key techniques for resolution enhancement technologies (RETs), optical proximity correction (OPC) suffers from prohibitive computational costs as feature sizes continue to shrink. Inverse lithography techniques (ILT) treat the mask optimization process as an inverse imaging problem, yielding high-quality curvilinear masks. However, ILT methods often fall short of printability and manufacturability due to their time-consuming procedures and excessive computational overhead. In this paper, we propose DevelSet, a potent metal layer OPC engine that replaces discrete pixel-based masks with implicit level set-based representations. With a GPU-accelerated lithography simulator, DevelSet achieves end-to-end mask optimization using a neural network to provide quasi-optimized level set initialization and further evolution with a CUDA-based mask optimizer for fast convergence. The backbone of DevelSet-Net is a transformer-based multi-branch neural network that offers a parameter selector to eliminate the need for manual parameter initialization. Experimental results demonstrate that the DevelSet framework outperforms state-of-the-art approaches in terms of printability while achieving fast runtime performance (around 1 second). We expect this enhanced level set technique, coupled with a CUDA/DNN accelerated joint optimization paradigm, to have a substantial impact on industrial mask optimization solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.