Abstract
Novel HPLC-ICP-MS methodologies are developed using strong anion exchange (Phenomenex SAX-SB) and weak anion exchange (Alltec HAAX) stationary phases in conjunction with a range of aqueous mobile phases to enable simultaneous separations of inorganic Sb(III), Sb(V) and organic trimethylantimony dichloride (TMSb) species in synthetic solutions. Optimum isocratic separations of inorganic Sb(V) and Sb(III) species are achieved using mobile phases comprised of ammonium tartrate under controlled pH conditions, and rapid pH gradient elution profiles are developed to facilitate separations of the Sb(V), Sb(III) and TMSb species in a single chromatographic run. Optimum peak resolution is achieved when using the 100 x 4.6 mm HAAX column at 20 degrees C and 100 mM ammonium tartrate mobile phases with a gradient from pH 3.0 to pH 1.2, although a system peak co-elutes with TMSb under these conditions and precludes quantitative analyses. Interestingly, the elution order of Sb(V), Sb(III) and TMSb species reverses when the temperature of the HAAX stationary phase is increased to 60 degrees C, and concurrent use of a less acidic pH gradient elution profile from pH 2.3 to pH 1.5 is shown to enable successful species separations whilst preventing occurrence of the co-eluting system peak. Limits of detection are achieved in the sub ng mL(-1) range using these novel HPLC-ICP-MS methodologies and provide scope for future environmental analysis applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.