Abstract

During the past few years, there has been a notable surge of interest in the field of smart structures. An intelligent structure is one that automatically responds to mechanical disturbances by minimizing oscillations after intelligently detecting them. In this study, a smart design that contains integrated actuators and sensors that can dampen oscillations is shown. A finite element analysis is used in conjunction with the application of dynamic loads such as wind force. The dynamic-loading-induced vibration of the intelligent piezoelectric structure is aimed to be mitigated using a μ-controller. The controller’s robustness against uncertainties in the parameters to address vibration-related concerns is showcased. This article offers a thorough depiction of the benefits stemming from μ-analysis and active vibration control in the behavior of intelligent structures. The gradual surmounting of these challenges is attributed to the increasing affordability and enhanced capability of electronic components used for control implementation. The advancement of μ-analysis and robust control for vibration reduction in intelligent structures is amply demonstrated in this study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call