Abstract

AbstractThe Colorado State University (CSU) Regional Atmospheric Modeling System (RAMS) has undergone development focused on improving the treatment of aerosols in the microphysics model, with the goal of examining the impacts of aerosol characteristics, scavenging, and regeneration processes, among others, on precipitation processes in clouds ranging from stratocumulus to deep convection and mixed-phase orographic clouds. Improvements in the representation of aerosols allow for more comprehensive studies of aerosol effects on cloud systems across scales. In RAMS there are now sub- and supermicrometer modes of sulfate, mineral dust, sea salt, and regenerated aerosol. All aerosol species can compete for cloud droplet nucleation, and they are regenerated via hydrometeor evaporation. A newly applied heterogeneous ice nuclei parameterization accounts for deposition nucleation and condensation and immersion freezing of aerosols greater than 0.5-μm diameter. There are also schemes for trimodal sea salt emissions and bimodal dust lofting that are functions of wind speed and surface properties. Aerosol wet and dry deposition accounts for collection by falling hydrometeors as well as gravitational settling of aerosols on water, soil, and vegetation. Aerosol radiative effects are parameterized via the Mie theory. An examination of the simulated impact of aerosol characteristics, sources, and sinks reveals mixed sensitivity among cloud types. For example, reduced aerosol solubility has little impact on deep convection since supersaturations are large and nearly all accumulation-mode aerosols activate. In contrast, reduced solubility results in reduced aerosol activation in precipitating stratocumulus. This leads to lower cloud droplet concentration, larger droplet size, and more efficient warm rain processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.