Abstract

The requirement to fabricate the micro features in difficult-to-machine materials has increased the demand for new micro-machining processes. Over the years, various micro-machining processes have emerged, such as non-conventional, hybrid, and tandem micro-machining processes. Recently, among all of these processes, the tandem micro-machining processes have gained substantial attention. In these processes, two machining methods are arranged tandemly to mitigate the drawbacks of the primary one. This manuscript presents a comprehensive systematic review of the recent developments carried out in the novel tandem micro-machining processes. After conducting a literature review, the existing tandem micro-machining processes have been classified into four categories: Thermo plus Electrochemical, Thermo plus Mechanical, Thermo plus Thermo, and Hybrid plus Mechanical/Thermal. This work includes a detailed description of process conceptualization, process mechanisms, current development and capabilities of tandem micro-machining processes regarding work material and machined features. The manuscript’s originality illustrates how combining two processes could effectively produce intricate shapes in difficult-to-cut materials. Furthermore, the various steps involved in developing a tandem process from the idea formulation to the implementation stage have been discussed in the manuscript. The future opportunities in tandem micro-machining processes have also been identified and presented as research potential. While motivated by the systematic investigation, initial experimental results obtained from the in-house developed micro tandem machining processes such as W-EDM plus W-ECM and Laser plus W-ECM have also been included.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.