Abstract

Shock-induced chemical reactions in inorganic powder mixtures have been the focus of multiple experimental and computational studies due to the possibilities for new material development from high-pressure chemical reactions and the low cost of achieving high dynamic pressures [1–4]. These reactions may additionally benefit from inter-particle mass mixing and rapid thermal changes in the shock wave environment to produce fine microstructures in the product. Reactions of this sort have been shown to take place within about 100 ns (similar to explosive detonations), occur primarily within and just behind the shock front as it propagates through the powder mixture, and lead to nearly complete product formation [5–7].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.