Abstract

In part because of their straightforward and modular syntheses from readily available enantiopure starting materials, and their capacity to bind a wide variety of transition metals, chiral, chelating nitrogen-donor ligands have played a prominent role in asymmetric catalysis. A large number of highly enantioselective transformations rely upon these ligands whose reported classes are built around amine, imine, pyrrole, pyrrolidine, oxazoline and oxazolidine donor groups, among others. In this Perspective, we examine a selection of transformative developments in asymmetric catalysis by metal complexes of bi- and polydentate members of this ligand family. We describe approaches to ligand design and synthesis, structure and bonding in coordination complexes, and limitations and future challenges.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.