Abstract
Molecular dynamics (MD) simulation has become a powerful tool for studying the structures and functional mechanisms of biomolecules, and its reliability crucially depends on the accuracy of underlying force fields. This perspective describes our recent efforts to develop more accurate protein force fields by improving the description of intrinsic conformational preferences of amino acid residues using residue-specific dihedral-angle-related parameters. Both backbone and side-chain conformational distributions and their coupling were optimized to fit those from a protein coil library. The resulting force fields RSFF1 and RSFF2 have been found to be more accurate than popular protein force fields, in reproducing experimental structural data of various peptides and proteins. They have also been successfully used in studying folding mechanisms and refinement of structure models. Further methodology developments related to intrinsically disordered proteins (RSFF2+) and a more universal implementation (RSFF2C) based on CMAP potentials are also described.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.