Abstract

In this technical brief we report the results of a systematic numerical investigation of developing laminar flow in axisymmetric concentric annuli over a wide range of radius ratio (0.01<Ri/Ro<0.8) and Reynolds number (0.001<Re<1000). When the annular gap is used as the characteristic length scale we find that for radius ratios greater than 0.5 the development length collapses to the channel-flow correlation. For lower values of radius ratio the wall curvature plays an increasingly important role and the development length remains a function of both radius ratio and Reynolds number. Finally we show that the use of an empirical modified length scale to normalize both the development length and the characteristic length scale in the Reynolds number collapses all of the data onto the channel-flow correlation regardless of the radius ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call