Abstract

The white mutant of the Mexican axolotl, A. mexicanum, involves an ectodermal defect which prevents melanophore colonization. Endogenous lectins have been suggested to function in neural crest-derived melanophore adhesion in other animals. To determine if differences in endogenous lectins exist in dark and white axolotls during melanophore colonization, white and dark ectoderm and carcass tissues have been assayed for lectin activity at premigratory, early migratory, and late migratory neural crest stages. Lectin content (specific for D-glucosamine, N-acetyl-D-glucosamine and D-mannose) increases significantly during early migration only in dark ectoderm and white carcass tissues, whereas white ectoderm and dark carcass lectin activities remain close to premigration levels. Neural crest cells in these embryos are associated with regions of high lectin activity suggesting that the differences in endogenous lectins may be involved in establishment of the dark/white phenotype.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call