Abstract
We have used a c-kit-specific monoclonal antibody, immuno-fluorescence staining and flow fluorocytometry or microscopy analysis to assess the cell surface expression of the c-kit receptor on a panel of non-transformed clones representing different stages of T- and B-lymphocyte development, freshly isolated lymphoid cells from thymus, bone marrow and spleen of young adult C57BL/6 mice and cells from yolk sac, thymus and liver of developing C57BL/6 mouse embryos. Pro-T, Pro-B and Pre-B clones derived from thymus or liver of 14-day embryos are c-kit+. Starting at day 8 to 8.5 in yolk sac, day-10 in fetal liver, and day 11 to 12 in fetal thymus, there are many c-kit+ cells. The number of c-kit+ cells in liver and thymus increases up to day 15 and progressively decreases thereafter. Cell sorter purified c-kit+ day 14 fetal liver cells fully reconstitute the T and B cell compartments of immunodeficient Scid mice. Stromal cells or epithelial cells derived from fetal thymus or liver, which can support growth and differentiation of c-kit+ lymphocyte progenitor clones, synthesize mRNA for Steel Factor (SF), the ligand of c-kit. In the adult mouse, however, c-kit expression is restricted to very early stages of T- and B-lymphocyte development (multipotent progenitors, B-cell/myelocytic progenitors, Pro-T and Pro-B lymphocyte progenitors). Most cells at the Pre-T, Pre-B and later stages of development do not bear detectable c-kit. Using Cos-1 cells transfected with mouse SF-cDNA and an antagonistic c-kit receptor-specific antibody, we show that the c-kit/SF system contributes to the survival of lymphocyte progenitors and enhances the proliferative responses of these cells to other growth factors (i.e. IL2, IL3, IL4, IL7). However, the c-kit receptor/SF ligand pair is neither sufficient nor necessary for the differentiation of lymphocyte progenitors into mature T- or B-lymphocytes. Finally, in stromal cell lines from fetal liver and adult bone marrow and thymic epithelial cell lines the level of steady state SF-RNA transcripts is inversely correlated with that of IL-7-mRNA. Moreover, IL7 inhibits the synthesis of SF-mRNA in stromal cells and rIL6 abrogates this inhibitory effect of rIL7. Thus, the expression of SF in stromal cells is subjected to complex regulation by other cytokines produced by the same stromal cells or by neighboring cells in a given microenvironment.(ABSTRACT TRUNCATED AT 400 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.