Abstract

The temporal and spatial regulation of gene expression in mammalian development is linked to the establishment of functional chromatin domains. Here, we report that tissue-specific transcription of a retrotransposon repeat in the murine growth hormone locus is required for gene activation. This repeat serves as a boundary to block the influence of repressive chromatin modifications. The repeat element is able to generate short, overlapping Pol II-and Pol III-driven transcripts, both of which are necessary and sufficient to enable a restructuring of the regulated locus into nuclear compartments. These data suggest that transcription of interspersed repetitive sequences may represent a developmental strategy for the establishment of functionally distinct domains within the mammalian genome to control gene activation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.