Abstract

In amphibians, embryonic exposure to chemical cues resulting from a predation event on conspecific eggs can influence hatching traits. However, there is no information on the precise origin of the active substances, or on the critical period of embryonic development mediating such a process. In this context, common frog ( Rana temporaria L., 1758) eggs were exposed at Gosner stage 2, 16, or 20 to chemical cues simulating predation on whole eggs, jelly envelopes, or embryos. Embryonic movement rate, hatching time, and developmental stage at hatching appeared unaffected by the nature of the treatment. In contrast, the embryonic treatments strongly affected the morphology of hatchlings, with the groups exposed to crushed whole eggs and jelly envelopes showing longer (exposures at stages 16 and 20) and deeper (exposure at stage 20) tails than their unexposed counterparts. In addition, exposure at stage 20 to crushed embryos also produced hatchlings with longer tails than the controls. Thus, morphological plasticity at hatching can result from a relatively short period of embryonic exposure to conspecific chemical cues. This critical period occurs at the completion of neurulation (stage 16), with the most marked effects resulting from an exposure at the last stage of embryonic development (stage 20).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call