Abstract

Currently, the coronavirus disease 2019 (COVID-19) pandemic experienced by the international community has increased the usage frequency of borderless, highly personalized social media platforms of all age groups. Analyzing and modeling texts sent through social media online can reveal the characteristics of the psychological dynamic state and living conditions of social media users during the pandemic more extensively and comprehensively. This study selects the Sina Weibo platform, which is highly popular in China and analyzes the subjective well-being (SWB) of Weibo users during the COVID-19 pandemic in combination with the machine learning classification algorithm. The study first invokes the SWB classification model to classify the SWB level of original texts released by 1,322 Weibo active users during the COVID-19 pandemic and then combines the latent growth curve model (LGCM) and the latent growth mixture model (LGMM) to investigate the developmental trend and heterogeneity characteristics of the SWB of Weibo users after the COVID-19 outbreak. The results present a downward trend and then an upward trend of the SWB of Weibo users during the pandemic as a whole. There was a significant correlation between the initial state and the development rate of the SWB after the COVID-19 outbreak (r = 0.36, p < 0.001). LGMM results show that there were two heterogeneous classes of the SWB after the COVID-19 outbreak, and the development rate of the SWB of the two classes was significantly different. The larger class (normal growth group; n = 1,229, 93.7%) showed a slow growth, while the smaller class (high growth group; n = 93, 6.3%) showed a rapid growth. Furthermore, the slope means across the two classes were significantly different (p < 0.001). Therefore, the individuals with a higher growth rate of SWB exhibited stronger adaptability to the changes in their living environments. These results could help to formulate effective interventions on the mental health level of the public after the public health emergency outbreak.

Highlights

  • The levels of psychological stress and emotional stress, as well as the living quality of Chinese people, have been greatly altered by the coronavirus disease 2019 (COVID-19) pandemic since its initial outbreak (Cui and Kertész, 2021)

  • Support Vector Machine (SVM), descriptive statistics, latent growth curve model (LGCM), and latent growth mixture model (LGMM) were used for analysis

  • This paper investigates the application of SVM for subjective wellbeing (SWB) classification

Read more

Summary

Introduction

The levels of psychological stress and emotional stress, as well as the living quality of Chinese people, have been greatly altered by the coronavirus disease 2019 (COVID-19) pandemic since its initial outbreak (Cui and Kertész, 2021). Due to the contagious nature of COVID-19 and long incubation periods experienced by patients, the Chinese government was quick to declare “war” on COVID-19 and took active steps to prevent the spread of the disease. They believed large scale lockdown to be an effective way to combat the virus (Pan et al, 2020). Current studies found that the effective prevention and control management was related to the increased usage of social media during the COVID19, and online social media such as Sina Weibo as the main communication media and information sources (Zhang and Yu, 2018; Li et al, 2019) This provided favorable conditions for us to explore the psychological status of Weibo users during the pandemic. In the context of the largest quasiquarantine, this “global health crisis” will negatively affect the mental health of Chinese citizens, including their subjective wellbeing (SWB)

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.