Abstract
Coxiella burnetii is an obligate intracellular bacterial pathogen that has evolved a unique biphasic developmental cycle. The infectious form of C. burnetii is the dormant small cell variant (SCV), which transitions to a metabolically active large cell variant (LCV) that replicates inside the lysosome-derived host vacuole. A Dot/Icm type IV secretion system (T4SS), which can deliver over 100 effector proteins to host cells, is essential for the biogenesis of the vacuole and intracellular replication. How the distinct C. burnetii life cycle impacts the assembly and function of the Dot/Icm T4SS has remained unknown. Here, we combine advanced cryo-focused ion beam (cryo-FIB) milling and cryo-electron tomography (cryo-ET) imaging to visualize all developmental transitions and the assembly of the Dot/Icm T4SS in situ. Importantly, assembled Dot/Icm machines were not present in the infectious SCV. The appearance of the assembled Dot/Icm machine correlated with the transition of the SCV to the LCV intracellularly. Furthermore, temporal characterization of C. burnetii morphological changes revealed regions of the inner membrane that invaginate to form tightly packed stacks during the LCV-to-SCV transition at late stages of infection, which may enable the SCV-to-LCV transition that occurs upon infection of a new host cell. Overall, these data establish how C. burnetii developmental transitions control critical bacterial processes to promote intracellular replication and transmission.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.