Abstract

Background: nanotechnology is one of the fastest-growing areas, and it is expected to have a substantial economic and social impact in the upcoming years. Gold particles (AuNPs) offer an opportunity for wide-ranging applications in diverse fields such as biomedicine, catalysis, and electronics, making them the focus of great attention and in parallel necessitating a thorough evaluation of their risk for humans and ecosystems. Accordingly, this study aims to evaluate the acute and developmental toxicity of surface-modified gold nanorods (AuNRs), on zebrafish (Danio rerio) early life stages. Methods: in this study, zebrafish embryos were exposed to surface-modified AuNRs at concentrations ranging from 1 to 20 μg/mL. Lethality and developmental endpoints such as hatching, tail flicking, and developmental delays were assessed until 96 h post-fertilization (hpf). Results: we found that AuNR treatment decreases the survival rate in embryos in a dose-dependent manner. Our data showed that AuNRs caused mortality with a calculated LC50 of EC50,24hpf of AuNRs being 9.1 μg/mL, while a higher concentration of AuNRs was revealed to elicit developmental abnormalities. Moreover, exposure to high concentrations of the nanorods significantly decreased locomotion compared to untreated embryos and caused a decrease in all tested parameters for cardiac output and blood flow analyses, leading to significantly elevated expression levels of cardiac failure markers ANP/NPPA and BNP/NPPB. Conclusions: our results revealed that AuNR treatment at the EC50 induces apoptosis significantly through the P53, BAX/BCL-2, and CASPASE pathways as a suggested mechanism of action and toxicity modality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call