Abstract

The spotted pod borer, Maruca vitrata (Lepidoptera: Crambidae) is a destructive insect pest that inflicts significant productivity losses on important leguminous crops. Unravelling insect proteomes is vital to comprehend their fundamental molecular mechanisms. This research delved into the proteome profiles of four distinct stages -three larval and pupa of M. vitrata, utilizing LC-MS/MS label-free quantification-based methods. Employing comprehensive proteome analysis with fractionated datasets, we mapped 75 % of 3459 Drosophila protein orthologues out of which 2695 were identified across all developmental stages while, 137 and 94 were exclusive to larval and pupal stages respectively. Cluster analysis of 2248 protein orthologues derived from MaxQuant quantitative dataset depicted six clusters based on expression pattern similarity across stages. Consequently, gene ontology and protein-protein interaction network analyses using STRING database identified cluster 1 (58 proteins) and cluster 6 (25 proteins) associated with insect immune system and lipid metabolism. Furthermore, qRT-PCR-based expression analyses of ten selected proteins-coding genes authenticated the proteome data. Subsequently, functional validation of these chosen genes through gene silencing reduced their transcript abundance accompanied by a marked increase in mortality among dsRNA-injected larvae. Overall, this is a pioneering study to effectively develop a proteome atlas of M. vitrata as a potential resource for crop protection programs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call