Abstract
We have used the lipophilic, fluorescent dye Nile red and flow cytometry to identify and isolate two rat lung fibroblast subsets, lipid-containing interstitial cells (LICs) and non-LICs (NLICs) and to quantitate developmental changes in the relative percentages of these subsets. A significant decrease was observed in the percentage of LICs (from 79.0 +/- 3.8% on postnatal day 4 to 28.6 +/- 4.2% on day 30; P < 0.0001). To determine whether one or both subsets undergo apoptosis postseptation, fibroblasts from 16- to 18-day rats were treated with BODIPY-conjugated dUTP to label DNA strand breaks, which were then quantitated by flow cytometry. Apoptotic cells were judged to be predominantly LICs based on flow cytometric estimates of cell size and granularity and on light-microscopic colocalization of intracellular lipid and Hoechst-positive apoptotic bodies. Cell proliferation was compared in LICs and NLICs with both an in vitro [(3)H]thymidine incorporation assay and cell cycle analysis of propidium iodide-stained cells. Results of both assays indicated that on days 4-5, LICs proliferated more rapidly than NLICs. Tropoelastin and fibronectin mRNA expression, evaluated by RT-PCR, indicated that although tropoelastin mRNA levels did not differ, fibronectin mRNA levels were approximately ninefold greater in LICs. These results demonstrate the feasibility of a flow cytometric assay for the analysis of size, granularity, and intracellular lipid content of neonatal rat lung fibroblast subsets. Subsets differed substantially with respect to proliferative capacity, fibronectin mRNA expression, and incidence of apoptosis postseptation. Together with the observed changes in relative percentages of fibroblast subsets with age, these data suggest that the ratio of LICs to NLICs could be a critical determinant of fibroblast function during lung development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.