Abstract
Potassium channels play a critical role in limiting neuronal excitability. Mutations in certain voltage-gated potassium channels have been associated with hyperexcitable phenotypes in both humans and animals. However, only recently have mutations in potassium channel genes (i.e. KCNQ2 and KCNQ3) been discovered in a human epilepsy, benign familial neonatal convulsions. Recently, it has been reported that mice lacking the voltage-gated Shaker-like potassium channel Kv1.1 α-subunit develop recurrent spontaneous seizures early in postnatal development. The clinical relevance of the Kv1.1 knockout mouse has been underscored by a recent report of epilepsy occurring in a family affected by mutations in the KCNA1 locus (the human homologue of Kv1.1) which typically cause episodic ataxia and myokymia. Here we summarize preliminary studies characterizing the developmental changes in seizure susceptibility and neuronal activation in the three genotypes of Kv1.1 mice (–/–, +/–, +/+). Using behavioral and immediate-early gene indicators of regional brain excitability, we have found that a seizure-sensitive predisposition exists in Kv1.1 –/– animals at a very young age (P10), before either spontaneous seizure activity or changes in c-fos mRNA expression can be demonstrated. Kv1.1 +/– mice, although behaviorally indistinguishable from wild types, also have an increased susceptibility to seizures at a similar early age. The Kv1.1 knockout mouse possesses many features desirable in a developmental animal epilepsy model and represents a clinically relevant model of early-onset epilepsies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.