Abstract

Adaptive resonance theory (ART) networks deal with normalized input data only, which means that they need the normalization process for the raw input data, under the assumption that the upper and lower bounds of the input data are known in advance. Without such an assumption, ART networks cannot be utilized. To solve this problem and improve the learning performance, inspired by the ART networks, we propose a developmental resonance network (DRN) by employing new techniques of a global weight and node connection and grouping processes. The proposed DRN learns the global weight converging to the unknown range of the input data and properly clusters by grouping similar nodes into one. These techniques enable DRN to learn the raw input data without the normalization process while retaining the stability, plasticity, and memory usage efficiency without node proliferation. Simulation results verify that our DRN, applied to the unsupervised clustering problem, can cluster raw data properly without a prior normalization process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.