Abstract

Most larval neurons in Drosophila are repurposed during metamorphosis for functions in adult life, but their contribution to the neural circuits for sexually dimorphic behaviors is unknown. Here, we identify two interneurons in the nerve cord of adult Drosophila females that control ovipositor extrusion, a courtship rejection behavior performed by mated females. We show that these two neurons are present in the nerve cord of larvae as mature, sexually monomorphic interneurons. During pupal development, they acquire the expression of the sexual differentiation gene, doublesex; undergo doublesex-dependent programmed cell death in males; and are remodeled in females for functions in female mating behavior. Our results demonstrate that the neural circuits for courtship in Drosophila are built in part using neurons that are sexually reprogrammed from former sex-shared activities in larval life.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.