Abstract

The products of the ftsA and ftsZ genes play a major role in septum formation in Escherichia coli. Their homologues have been found in various bacterial species, such as Bacillus subtilis where they are involved in septation during vegetative growth as well as during sporulation, a developmental process that is initiated by the formation of an asymmetrically positioned septum. Transcription of the B. subtilis ftsAZ operon was studied during exponential growth and sporulation by monitoring β-galactosidase synthesis in strains harboring fusions of the E. colilacZ gene with various fragments of the ftsAZ regulatory region. Transcription of the ftsAZ operon was found to be controlled by three promoters which were mapped by primer extension and characterized by their temporal pattern of expression. Two of these promoters, P1 and P3, are dependent on σ a, the major vegetative sigma factor, and are expressed mainly during growth. The third one, P2, is recognized by σ H-associated RNA polymerase and its activity increases three-to four-fold around the onset of sporulation. The post-exponential enhancement of P2-driven transcription is abolished in a spo0A mutant but partially restored in an abrB spo0A double mutant. After inactivation by oligonucleotide-directed mutagenesis mutated copies of P1 and P2 were introduced into the chromosome upstream from the ftsAZ operon. Transformants could be obtained only when ftsAZ transcription was controlled by a combination of two intact promoters, neither P1, P2 nor P3 being essential for viability. The sporulation efficiency was found to be dependent on the level of transcription of ftsAZ, the absence of P2 still allowing 30% of the normal sporulation rate. Therefore the post-exponential burst of synthesis of the FtsA and FtsZ proteins is not an absolute requirement for the successful completion of the asymmetric septum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.