Abstract

The relative levels of microtubule-associated protein 2(MAP2) were determined during postnatal development of the mouse in six different discrete brain regions: cerebellum, cortex, hippocampus, olfactory bulb, brainstem, and hypothalamus. Brain homogenates were electrophoresed on sodium dodecyl sulfate-containing gels and analyzed by immunoblotting with MAP2-specific antibodies. The levels of MAP2 in each region were determined using radiolabeled secondary antibodies and densitometric quantification of the autoradiograms over a range that was determined to have a linear response. The results indicated that in all regions and at all ages there was only one high-molecular-weight polypeptide of MAP2, which did not change in electrophoretic mobility after dephosphorylation. In most regions, the levels of MAP2 increased during the first 2 postnatal weeks. However, there were differences in the time course and relative levels of MAP2 between regions. In addition, all regions of the brain expressed the low-molecular-weight form of MAP2 (MAP2c) that was present at birth as a heterogeneous group of polypeptides with an apparent molecular weight of 70K. Most of the heterogeneity of MAP2c, however, was eliminated after dephosphorylation. The levels of MAP2c decreased dramatically after 2 weeks postnatally, except for the olfactory bulb, where the levels of MAP2c remained relatively high even in adults.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.