Abstract

DNA cytosine methylation is involved in the regulation of gene expression during development and its deregulation is often associated with disease. Mammalian genomes are predominantly methylated at CpG dinucleotides. Unmethylated CpGs are often associated with active regulatory sequences while methylated CpGs are often linked to transcriptional silencing. Previous studies on CpG methylation led to the notion that transcription initiation is more sensitive to CpG methylation than transcriptional elongation. The immunoglobulin heavy chain (IgH) constant locus comprises multiple inducible constant genes and is expressed exclusively in B lymphocytes. The developmental B cell stage at which methylation patterns of the IgH constant genes are established, and the role of CpG methylation in their expression, are unknown. Here, we find that methylation patterns at most cis-acting elements of the IgH constant genes are established and maintained independently of B cell activation or promoter activity. Moreover, one of the promoters, but not the enhancers, is hypomethylated in sperm and early embryonic cells, and is targeted by different demethylation pathways, including AID, UNG, and ATM pathways. Combined, the data suggest that, rather than being prominently involved in the regulation of the IgH constant locus expression, DNA methylation may primarily contribute to its epigenetic pre-marking.

Highlights

  • DNA methylation is a common epigenetic regulation mechanism in vertebrates and is involved in gene expression regulation during development and differentiation as well as in defense of the genome against transposable elements

  • DNA methylation mainly occurs at CpG dinucleotides and strongly influences gene expression during development

  • In mammalian genomes, unmethylated CpG dinucleotides are generally associated with active regulatory sequences, while methylated CpGs are often associated with silent promoters

Read more

Summary

Introduction

DNA methylation is a common epigenetic regulation mechanism in vertebrates and is involved in gene expression regulation during development and differentiation as well as in defense of the genome against transposable elements. DNA methylation provides a robust epigenetic mechanism for cell fate decisions, cell identity and tissue homeostasis. While unmethylated CpG sites and CGIs are generally associated with active promoters, methylated CpGs (mCpGs) and mCGIs are closely associated with transcriptionally silent promoters. This pattern is less obvious when it comes to transcription elongation as mCpGs and mCGIs in gene body did not block elongation, leading to the notion that it is transcription initiation that is more sensitive to cytosine methylation [2,3,4]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.