Abstract

Prominent features of the cytosine methylation pattern of the Pisum sativum nuclear ribosomal RNA genes have been defined. Cytosine methylation within the C-C-G-G sequence was studied using the restriction enzymes HpaII and MspI and gel blot hybridizations of the restriction digests. The extent to which particular features of the methylation pattern change during seedling development has also been determined. Total cellular DNA, purified from defined sections of pea seedlings grown under different lighting conditions, was analyzed with DNA hybridization probes derived from different portions of a cloned member of the nuclear rRNA gene family. By use of an indirect end-labeling technique, a map of 23 cleavable HpaII and/or MspI sites in genomic rDNA was constructed. The map covers about 90% of the rDNA repeat including the entire non-transcribed spacer region and most of the rRNA coding sequences. One notable feature of the map is that the most prominent HpaII site, located about 800 base-pairs upstream from the 5′ end of the mature 18 S rRNA, is cleaved only in one of the two most abundant rDNA length variants (the short variant). With a gel blot assay specific for cleavage at this site, we estimated the HpaII sensitivity of DNA preparations from several stages of pea seedling development. We find that, while methylation is generally low in young seedlings, DNA obtained from the apical buds of pea seedlings is highly methylated. Further, the methylation level of rDNA within the pea bud decreases as the buds are allowed to develop under continuous white light. Our data, taken together with published studies on pea seedling development, indicate that cytosine methylation levels may be related to the regulated expression of the nuclear rRNA genes in pea.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call