Abstract

An inhibitor of eIF-2a phosphorylation was identified in various plant species. The plant protein (termed PKI) specifically cross-reacts with monoclonal antiserum that recognizes the glycosylated, active form of a M(r) 87 kD protein analog (p67) from reticulocytes. Northern blot analysis using a probe to the reticulocyte inhibitor cDNA further supports the presence of analogous transcripts in plant tissue. PKI specifically inhibits the phosphorylation of the plant encoded eIF-2 alpha kinase (pPKR) as well as plant and human eIF-2 alpha phosphorylation. The interaction between PKI and pPKR is indicated by their copurification on dsRNA agarose, despite evidence showing that PKI does not bind dsRNA. Further, wheat PKI inhibits human PKR phosphorylation but activity is recovered by immuno-depletion of PKI from wheat germ fractions. PKI is temporally regulated during plant growth and development. It is maximally present in extracts from dormant seeds, however, it is not detectable soon after leaf emergence at approximately 48 h post-imbibition. PKI levels are again detectable at the mid-milk stage in seed development. Protein levels of pPKR in ribosomal salt wash and cytosolic extracts from healthy plant tissue remain essentially constant throughout the life cycle. In contrast, pPKR activity levels based upon autophosphorylation vary significantly and are inversely correlated with PKI protein levels. Phosphorylation of eIF-2 alpha is a classical mechanism for the downregulation of protein synthesis suggesting that inhibition of pPKR activity by PKI may contribute to the dramatic and rapid increase in protein synthesis observed during seed germination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.