Abstract
Metatherian (marsupial) mammals possess a non-random form of X-chromosome inactivation in which the paternally-derived X is always the one inactivated. To examine the progression of X-linked gene expression during metatherian development, we compared relative levels of the maternally and paternally encoded Gpd gene products in heterozygous female Virginia opossums (Didelphis virginiana) across a major portion of the developmental period. Panels of tissues obtained from fetuses, newborns, and pouch young were examined via polyacrylamide gel electrophoresis of the G6PD protein. As in adults, G6PD phenotypes in these developmental stages were highly skewed in favor of the maternal allele product, but in some tissues there was a marked increase in paternal allele expression with advancing developmental age. However, even by 42 days of post-partum development, expression of the paternal Gpd allele had not attained the adult, tissue-specific activity pattern. Our findings indicate remarkable developmental changes in the activity of the paternal allele in several tissues/organs continuing well into mid pouch-life stages and beyond. Specifically we found that 1) a substantially repressed paternal Gpd gene is present in the cells of female stage 29 fetuses and later developmental stages, 2) the activity state of the paternal Gpd gene is not fixed during early embryonic development in this species, 3) major changes in paternal Gpd expression occur in advanced developmental stages and comprise a maturation of the gene expression pattern during ontogeny, and 4) alterations of paternal Gpd allele activity during development occur in a tissue-specific manner.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.