Abstract

BackgroundHydroxyproline rich glycoproteins (HRGPs) are implicated to have a role in many aspects of plant growth and development but there is limited knowledge about their localization and function during somatic embryogenesis of higher plants. In this study, the localization and function of hydroxyproline rich glycoproteins in embryogenic cells (ECs) and somatic embryos of banana were investigated by using immunobloting and immunocytochemistry with monoclonal JIM11 and JIM20 antibodies as well as by treatment with 3,4-dehydro-L-proline (3,4-DHP, an inhibitor of extensin biosynthesis), and by immunomodulation with the JIM11 antibody.ResultsImmunofluorescence labelling of JIM11 and JIM20 hydroxyproline rich glycoprotein epitopes was relatively weak in non-embryogenic cells (NECs), mainly on the edge of small cell aggregates. On the other hand, hydroxyproline rich glycoprotein epitopes were found to be enriched in early embryogenic cells as well as in various developmental stages of somatic embryos. Embryogenic cells (ECs), proembryos and globular embryos showed strong labelling of hydroxyproline rich glycoprotein epitopes, especially in their cell walls and outer surface layer, so-called extracellular matrix (ECM). This hydroxyproline rich glycoprotein signal at embryo surfaces decreased and/or fully disappeared during later developmental stages (e.g. pear-shaped and cotyledonary stages) of embryos. In these later developmental embryogenic stages, however, new prominent hydroxyproline rich glycoprotein labelling appeared in tri-cellular junctions among parenchymatic cells inside these embryos. Overall immunofluorescence labelling of late stage embryos with JIM20 antibody was weaker than that of JIM11. Western blot analysis supported the above immunolocalization data. The treatment with 3,4-DHP inhibited the development of embryogenic cells and decreased the rate of embryo germination. Embryo-like structures, which developed after 3,4-DHP treatment showed aberrant non-compact epidermis with discontinuous ECM at the outer surface as well as much less immunolabelling with the JIM11 antibody. This treatment also decreased the plant regeneration capacity in embryogenic banana cultures. Finally, immunomodulation of surface hydroxyproline rich glycoproteins by co-culture of embryos with the JIM11 antibody resulted in a much lower germination capacity of these embryos.ConclusionsThese results suggest that hydroxyproline rich glycoproteins play an important developmental role, especially in the process of regeneration and germination of embryos during plant regeneration via somatic embryogenesis. Proper content and localization of hydroxyproline rich glycoproteins seem to be essential for the formation and regeneration of banana somatic embryos.

Highlights

  • Hydroxyproline rich glycoproteins (HRGPs) are implicated to have a role in many aspects of plant growth and development but there is limited knowledge about their localization and function during somatic embryogenesis of higher plants

  • Expression pattern of HRGPs in embryogenic cells (ECs), non-embryogenic cells (NECs) and somatic embryos of different developmental stages Immunoblots were used to detect the expression of HRGPs in NECs, ECs and embryos of different developmental stages by using monoclonal anti-HRGP antibodies JIM11 and JIM20 (Smallwood et al 1994)

  • JIM20 epitope was moderately expressed in embryogenic tissues while only very low expression was detected in NECs (Figure 1b)

Read more

Summary

Introduction

Hydroxyproline rich glycoproteins (HRGPs) are implicated to have a role in many aspects of plant growth and development but there is limited knowledge about their localization and function during somatic embryogenesis of higher plants. The localization and function of hydroxyproline rich glycoproteins in embryogenic cells (ECs) and somatic embryos of banana were investigated by using immunobloting and immunocytochemistry with monoclonal JIM11 and JIM20 antibodies as well as by treatment with 3,4-dehydro-Lproline (3,4-DHP, an inhibitor of extensin biosynthesis), and by immunomodulation with the JIM11 antibody. To better understand mechanisms, which regulate plant polarity and morphogenesis, it is very important to get a deeper knowledge about the functional architecture of the cell wall during cell shape acquisition and cell differentiation. The polarity within the embryo is established through the precisely controlled cell division pattern of embryogenic cells (ECs) and elongation of supporting suspensor-like and callus cells. The cell wall appears to play an essential structural role during somatic embryogenesis [6,7]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.