Abstract

Early developmental kinetics of nuclear transfer (NT) embryos reconstituted with blastomeres and parthenogenones produced by ionophore activation followed by either dimethylaminopurine (DMAP) or cycloheximide (CHX) treatment was studied. In vitro produced (IVP) embryos served as controls. Embryos were cultured to the hatched blastocyst stage, and images were recorded every 0.5 h throughout the culture period. The longest cell cycle shifted from 4th to 5th cycle (26 +/- 4 and 44 +/- 5 h) in NT-embryos compared to IVP-embryos (41 +/- 2 and 20 +/- 3 h) and showed greater asynchrony between blastomeres than any other embryo category. Compared to DMAP, CHX prolonged the 1(st) (23 +/- 1 vs. 33 +/- 1 h) and shortened the 3(rd) cell cycle (17 +/- 2 vs. 13 +/- 1 h). Moreover, though cytoskeleton activity was initialised, a larger proportion of CHX embryos was unable to accomplish first cleavage. The parthegenones differed from IVP embryos with respect to the lengths of the 1st, 3rd, and 4th cell cycles and time of hatching. The findings are discussed in relation to known ultrastructural, chromosomal and genomic aberrations found in NT embryos and parthenogenones. We hypothesize that the shift of the longest cell cycle in NT embryos is associated with a shift in the time of major genomic transition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call