Abstract

Cytochrome P450c17 catalyzes the 17alpha-hydroxylase/17,20 lyase activity needed for sex steroid synthesis. We recently characterized the nuclear phosphoprotein SET as a novel transcriptional regulator that binds to the -447/-399 region of the rat P450c17 gene, along with the transcription factors COUP-TF II, NGF-IB, and SF-1. Gel shift studies localized SET binding to nucleotides -410/-402. We have shown that SET activates transcription of the rat P450c17 gene in neuronal precursor cells and now show that it also activates transcription from the -418/-399 region of the rat P450c17 gene in mouse Leydig MA-10 cells. Studying the ontogenic expression of SET and P450c17 in the rodent gonad, we found that SET expression preceded P450c17 expression in the embryonic genital ridge, suggesting that SET may be important for initiating P450c17 expression in this region. Expression of SET also preceded P450c17 expression in the testis and ovary, and its expression was much greater during embryogenesis than in the adult gonad. In the adult rat testis, P450c17 was expressed only in Leydig cells, while SET was expressed in Leydig cells and in spermatocytes. In the adult rat ovary, P450c17 was expressed only in theca cells, while SET was expressed in theca cells and also in oocytes. Because SET is expressed early in development in the genital ridge and in the testis and ovary, and because SET has many functions in addition to its activity as a transcription factor, we determined whether SET acts a transcription factor in oocytes. The SET protein was detected by Western blots in Xenopus oocytes from stages II through VI and in mature oocytes. Using extracts of Xenopus oocytes in gel shift assays, we detected a protein that bound to the -418/-399 region of the rat P450c17 gene, to which SET binds. Nuclear injection of either a -418/-399TK32LUC wildtype reporter construct or a construct containing a mutant SET site into Xenopus oocytes from stages III through VI resulted in activation of luciferase activity with the wildtype but not the mutant construct in all stages. These data suggest that Xenopus SET is able to bind to specific DNA sequences to activate transcription at all stages of Xenopus oogenesis. These data indicate that SET is an evolutionarily conserved transcription factor that participates in the early ontogenesis of the gonadal system, regulates P450c17 gene transcription in Leydig cells, and may also activate other genes expressed in immature oocytes, thus playing a role in oocyte development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call