Abstract

In order to better understand control of the mitochondrial pyruvate dehydrogenase complex (PDC), total catalytic activity was determined during development of the primary leaves of pea (Pisum sativum L.) seedlings, as well as in each leaf pair of 21-day-old plants. Activity of the PDC in clarified homogenates was highest in the youngest organs and then dropped dramatically as the leaves matured and became photosynthetically competent. As leaves began to senesce, total PDC activity dropped to zero. Steady-state mRNA levels were determined using E1 and E3 cDNA probes. The overall pattern of transcript abundance matched the pattern observed for total PDC activity; transcript levels for E1alpha and E1beta approached zero during senescence. Levels of the E1alpha, E1beta, E2 and E3 subunits of the PDC were analyzed in the same samples, using specific antibodies. Quantitation of the immunoblotting results throughout this developmental series showed a pattern in parallel with that of catalytic activity and mRNA levels, although the relative changes in subunit protein levels were not as extreme as the changes in activity. The exception to the global pattern was that of the E3 subunit: lipoamide dehydrogenase. Expression of this enzyme was highest in mature, fully expanded leaves, which were active in photosynthesis and photorespiration, reflecting the additional role of E3 as a component of glycine decarboxylase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.