Abstract

During the development of the central nervous system, estrogen influences cellular differentiation and determines the functional connectivity of distinct neural networks. Estrogens generally act through nuclear estrogen receptors (ERs). Recent research has additionally revealed rapid estrogen effects requiring the binding of estrogen to membrane/cytoplasmic ERs and the activation of intracellular signaling systems such as the Src/MAPK cascade. The scaffold protein MNAR/PELP1 appears to be the designated functional mediator of such non-genomic estrogen effects between non-nuclear ERs and Src/MAPKs. In this study, we demonstrate the expression and differential regulation of MNAR mRNA in the developing male and female mouse brain by quantitative polymerase chain reaction. In the midbrain and hypothalamus, a gradual decline in MNAR mRNA levels has been observed prenatally with the highest values at embryonic day 15 and lowest at postnatal day 15. In the cortex, mRNA levels do not fluctuate until postnatal day 7 but decrease thereafter. No differences in MNAR expression between sexes have been detected. Analysis of neuronal and astroglia-enriched cell cultures has revealed the presence of MNAR in both cell types.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.