Abstract

Insulin receptor substrate-2 (IRS-2) is phosphorylated on tyrosine by a number of cytokine receptors and is implicated in the activation of phosphatidylinositol 3'-kinase (PI3-kinase). Here, we demonstrate that induction of granulocytic differentiation of human promyeloid HL-60 cells leads to an increase in the amount of IRS-2 that is phosphorylated in response to insulin-like growth factor (IGF)-I. Although PI3-kinase is often activated following interaction with IRS-1, we could not detect IRS-1 protein, IRS-1 mRNA, or IRS-1-precipitable PI3-kinase enzymatic activity. However, PI3-kinase activity that was coimmunoprecipitated with either anti-phosphotyrosine or anti-IRS-2 following IGF-I stimulation was increased 100-fold. Heightened tyrosine phosphorylation of IRS-2 during granulocytic differentiation was not caused by an increase in expression of the tyrosine kinase IGF-I receptor, as measured by the amount of both the alpha- and beta-subunits. Instead, immunoblotting experiments with an Ab to IRS-2 revealed that induction of granulocytic differentiation caused a large increase in IRS-2, and this occurred in the absence of detectable IRS-1 protein. These IRS-2-positive cells could not differentiate into more mature myeloid cells in serum-free medium unless IGF-I was added. These data are consistent with a model of granulocytic differentiation that requires at least two signals, the first of which leads to an increase in the cytoplasmic pool of IRS-2 protein and a second molecule that acts to tyrosine phosphorylate IRS-2 and enhance granulocytic differentiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.