Abstract
Perinatal neurodevelopment involves extensive formation of neural connections and onset of activity-dependent gene expression for synaptic function and plasticity. Exposure to psychostimulants at this stage imposes significant risks for developing cognitive and affective disorders later in life. However, how developmental exposure to psychostimulants may induce long-lasting molecular changes relevant to neural circuit function remains incompletely understood. In this study, we investigated the impacts of psychostimulant amphetamine on the activity-dependent induction of synaptic adaptor molecule Arc in the frontal cortex of neonatal mice. We found that transient exposure to amphetamine not only amplifies activity-dependent Arc mRNA expression immediately, but also potentiates subsequent induction of Arc mRNA in the absence of amphetamine. This priming effect is associated with a rapid and persistent increase in histone mono-methylation (H3K4me1), a marker for transcriptionally permissive chromatin, at the Arc locus, but not any long-lasting change in the phosphorylation of upstream transcription factor CREB. Furthermore, the increase in H3K4me1 at the Arc locus requires dopamine receptor signaling, and the priming of Arc expression correlates with the dopaminergic innervation pattern in the frontal cortex. Together, our results demonstrate that developmental exposure to psychostimulant amphetamine induces long-lasting chromatin changes and primes activity-dependent Arc gene induction. These findings reveal the molecular targets of psychostimulant during perinatal development that may contribute to long-term psychiatric risks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.