Abstract

Human and wildlife are exposed at critical periods of development to endocrine disruptor chemicals (EDC) that may be responsible for reproductive disorders. To test the hypothesis that in ovum exposure to EDC at a critical period for gonadal organogenesis alters post-hatching folliculogenesis and steroidogenesis in Caiman latirostris, we studied the impact of in ovum exposure to 17β-estradiol (E2), bisphenol A (BPA), endosulfan (END) and atrazine (ATZ) on gonadal differentiation, follicular dynamics and circulating levels of steroid hormones in neonatal and juvenile caiman. Since C. latirostris is a species with temperature dependent sex determination, eggs were incubated at male (33°C) or female (30°C) producing temperatures and the effect of EDC was evaluated. Neonatal ovaries exhibited germ cells mainly located in clusters evidencing proliferative activity and type I to III follicles. Juvenile ovaries exhibited germ cells and advanced stages of pre-vitellogenic follicles. Prenatal exposure to the highest doses of E2 (1.4ppm) or BPA (140ppm) overrode male temperature effect on sex determination. Neonatal females produced by sex reversion lacked type III follicles, while females prenatally exposed to the lowest doses of E2 (0.014ppm) and BPA (1.4ppm) or ATZ (0.2ppm) showed an increase in type III follicles. Juvenile caiman prenatally exposed to E2 or BPA showed an augmented incidence of multioocyte follicles. Neonatal female caiman exposed in ovum to E2 or BPA had higher estrogen serum levels whereas exposure to E2, BPA, ATZ and END decreased T levels. Present data demonstrates that exposure to EDC during gonadal organogenesis alters follicular dynamics and steroid levels later in life. These effects might have an impact on caiman fertility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.