Abstract

Developmental dyscalculia (DD) is a specific learning disorder that affects the acquisition of arithmetic skills and number processing in children. A high comorbidity between DD and other neurodevelopmental disorders (e.g., dyslexia, attention-deficit/hyperactivity disorder [ADHD]) as well as substantial heterogeneity in cognitive profiles have been reported. Current studies indicate that DD is persistent, has a genetic component, and is related to functional and structural alterations of brain areas involved in magnitude representation. Recent neuronal and behavioral evidence is presented, showing that DD entails (a) impairments in two preverbal core systems of number, an approximate system for estimating larger magnitudes and an exact system for representing small magnitudes, (b) deficits in symbolic number processing, (c) aberrant and nonadaptive neuronal activation in basic magnitude processing and calculation, (d) dysfunctional arithmetic fact retrieval and persistent use of counting strategies in calculation, and (e) deficits in visuospatial working memory and the central executive. Finally, open research questions, including the role of domain-general cognitive resources in DD, causes and developmental consequences of comorbidity, as well as design and evaluation of interventions for DD, are briefly discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call