Abstract

The hippocampus is a brain region associated with memory, learning and spatial navigation, its aging-related dysfunction is a common sign of Alzheimer's disease. Pig is a good model for human neurodegenerative disease, but our understanding of the regulatory program of the pig hippocampus and its cross-species conservation in humans remains limited. Here, we profiled chromatin accessibility in 33,409 high-quality nuclei and gene expression in 8,122 high-quality nuclei of the pig hippocampus at four postnatal stages. We identified 510,908 accessible chromatin regions (ACRs) in 12 major cell types, among which progenitor cells such as neuroblasts and oligodendrocyte progenitor cells showed a dynamic decrease from early to later developmental stages. We revealed significant enrichment of transposable elements in cell type-specific ACRs, particularly in neuroblasts. We identified oligodendrocytes as the most prominent cell type with the greatest number of genes that showed significant changes during the development. We identified ACRs and key transcription factors underlying the trajectory of neurogenesis (such as POU3F3 and EGR1) and oligodendrocyte differentiation (RXRA and FOXO6). We examined 27 Alzheimer's disease-related genes in our data and found that 15 showed cell type-specific activity (TREM2, RIN3 and CLU), and 15 genes displayed age-associated dynamic activity (BIN1, RABEP1 and APOE). We intersected our data with human genome-wide association study results to detect neurological disease-associated cell types. The present study provides a single nucleus-accessible chromatin landscape of the pig hippocampus at different developmental stages and is helpful for the exploration of pigs as a biomedical model in human neurodegenerative diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.