Abstract

In many neural and non-neural cells, ATP-sensitive potassium (K(ATP)) channels couple the membrane potential to energy metabolism. We investigated the activation of K(ATP) currents in astrocytes of different brain regions (hippocampus, cerebellum, dorsal vagal nucleus) by recording whole-cell currents with the patch-clamp technique in acute rat brain slices. Pharmacological tools, hypoglycemia and specific compounds in the pipette solution (cAMP, UDP), were used to modulate putative K(ATP) currents. The highest rate of K(ATP) specific currents was observed with a pipette solution containing cAMP and external stimulation with diazoxide (0.3 mM). The diazoxide-activated current had a reversal potential negative to -80 mV and was inhibited by tolbutamide (0.2 mM). We found that not all cells activated a K(ATP) current, and that the portion of cells with functional K(ATP) channel expression was developmentally downregulated. Whereas diazoxide activated K(ATP) currents in 57% of the astrocytes in rats aged 8-11 days (n = 21), the rate decreased to 38% at 12-15 days (n = 29) and to 8% at 16-19 days (n = 12). No significant difference was observed for the three brain regions. In recordings without cAMP in the internal solution, only 21% (12-15 days; n = 19) or none (16-19 days; n = 7), respectively, showed a potassium current upon diazoxide application. This metabolically regulated potassium conductance may be of importance, particularly in immature astrocytes with a complex current pattern, which have a relatively high input resistance: K(ATP) currents activated by energy depletion may hyperpolarize the cells, or stabilize a negative resting potential during depolarizing stimuli mediated, e.g., by glutamate receptors and/or uptake carriers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.