Abstract
Developmental malformations of cortex have been shown to co-occur with language, learning, and other cognitive deficits in humans. Rodent models have repeatedly shown that animals with such developmental malformations have deficits related to auditory processing and learning. More specifically, freeze-lesion induced microgyria as well as molecular layer ectopias have been found to impair rapid auditory processing ability in rats and mice. In humans, deficits in rapid auditory processing appear to relate to later impairments of language. Recently, genetic variants of four different genes involved in early brain development have been proposed to associate with an elevated incidence of developmental dyslexia in humans. Three of these, DYX1C1, DCDC2, and KIAA0319, have been shown by in utero RNAi to play a role in neuronal migration in developing neocortex. The present study assessed the effects of in utero RNAi of Dyx1c1 on auditory processing and spatial learning in rats. Results indicate that RNAi of Dyx1c1 is associated with cortical heterotopia and is suggestive of an overall processing deficit of complex auditory stimuli in both juvenile and adult periods ( p = .051, one-tail). In contrast, adult data alone reveal a significant processing impairment among RNAi treated subjects compared to shams, indicating an inability for RNAi treated subjects to improve detection of complex auditory stimuli over time ( p = .022, one-tail). Further, a subset of RNAi treated rats exhibited hippocampal heterotopia centered in CA1 (in addition to cortical malformations). Malformations of hippocampus were associated with robust spatial learning impairment in this sub-group ( p < .01, two-tail). In conclusion, in utero RNAi of Dyx1c1 results in heterogeneous malformations that correspond to distinct behavioral impairments in auditory processing, and spatial learning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.