Abstract

In the present work, we found that the delayed rectifying outward potassium current (I(K)) in adult and neonatal cat ventricular myocytes consists of both rapid and slow components, I(Kr) and I(Ks), respectively, which can be isolated pharmacologically. Thus after complete blockade of I(Kr) with dofetilide, the remaining I(Ks) current is homogeneous, as shown by an envelope of tails test. I(Kr) maximum tail current density, measured at -40 mV, was similar in adult and neonatal myocytes. I(Ks) maximum tail current density in neonatal myocytes, measured at -40 mV, was significantly smaller than in adult myocytes. Activation kinetics of I(Kr) and I(Ks) was similar in both age groups. However, the I(Kr) deactivation time course was significantly faster in neonatal than in adult myocytes. Developmental differences in the subunit composition of I(Kr) that display distinctly different deactivation kinetics are suggested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.