Abstract

In response to a growing interest in refining brain connectivity assessments, this study focuses on integrating white matter fiber-specific microstructural properties into structural connectomes. Spanning ages 8-19 years in a developmental sample, it explores age-related patterns of microstructure-informed network properties at both local and global scales. First, the diffusion-weighted signal fraction associated with each tractography-reconstructed streamline was constructed. Subsequently, the convex optimization modeling for microstructure-informed tractography (COMMIT) approach was employed to generate microstructure-informed connectomes from diffusion MRI data. To complete the investigation, network characteristics within eight functionally defined networks (visual, somatomotor, dorsal attention, ventral attention, limbic, fronto-parietal, default mode, and subcortical networks) were evaluated. The findings underscore a consistent increase in global efficiency across child and adolescent development within the visual, somatomotor, and default mode networks (p < 0.005). Additionally, mean strength exhibits an upward trend in the somatomotor and visual networks (p < 0.001). Notably, nodes within the dorsal and ventral visual pathways manifest substantial age-dependent changes in local efficiency, aligning with existing evidence of extended maturation in these pathways. The outcomes strongly support the notion of a prolonged developmental trajectory for visual association cortices. This study contributes valuable insights into the nuanced dynamics of microstructure-informed brain connectivity throughout different developmental stages.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.