Abstract

Enhancement and application of our understanding of skeletal developmental biology is critical to developing tissue engineering approaches to bone repair. We propose that use of the developing embryonic femur as a model to further understand skeletogenesis, and the effects of key differentiation agents, will aid our understanding of the developing bone niche and inform bone reparation. We have used a three-dimensional organotypic culture system of embryonic chick femora to investigate the effects of two key skeletal differentiation agents, parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP), on bone and cartilage development, using a combination of microcomputed tomography and histological analysis to assess tissue formation and structure, and cellular behavior. Stimulation of embryonic day 11 (E11) organotypic femur cultures with PTH and PTHrP initiated osteogenesis. Bone formation was enhanced, with increased collagen I and STRO-1 expression, and cartilage was reduced, with decreased chondrocyte proliferation, collagen II expression, and glycosaminoglycan levels. This study demonstrates the successful use of organotypic chick femur cultures as a model for bone development, evidenced by the ability of exogenous bioactive molecules to differentially modulate bone and cartilage formation. The organotypic model outlined provides a tool for analyzing key temporal stages of bone and cartilage development, providing a paradigm for translation of bone development to improve scaffolds and skeletal stem cell treatments for skeletal regenerative medicine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.