Abstract

Common aspects of infertility can be seen across several species. In humans, dairy cows, and mares there is only a 25-35% chance of producing a live offspring after a single insemination, whether natural or artificial. Oocyte quality and subsequent embryo development can be affected by factors such as nutrition, hormonal regulation, and environmental influence. The objective of this study was to identify genes expressed in oocytes and/or cumulus cells, across a diverse range of species, which may be linked to the ability an oocyte has to develop following fertilization. Performing a meta-analysis on previously published microarray data on various models of oocyte and embryo quality allowed for the identification of 56 candidate genes associated with oocyte quality across several species, 4 of which were identified in the cumulus cells that surround the oocyte. Twenty-one potential biomarkers were associated with increased competence and 35 potential biomarkers were associated with decreased competence. The upregulation of Metap2, and the decrease of multiple genes linked to mRNA and protein synthesis in models of competence, highlights the importance of de novo protein synthesis and its regulation for successful oocyte maturation and subsequent development. The negative regulation of Wnt signaling has emerged in human, monkey, bovine, and mouse models of oocyte competence. Atrx expression was linked to decreased competence in both oocytes and cumulus cells. Biological networks and transcription factor regulation associated with increased and decreased competence were also identified. These genes could potentially act as biomarkers of oocyte quality or as pharmacological targets for manipulation in order to improve oocyte developmental potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.